Information density of a DVD

by Werner Gitt

Area of stored information on a DVD:
$\mathrm{D}=117.5 \mathrm{~mm}$
$\mathrm{d}=43.5 \mathrm{~mm}$
Thickness of a DVD:
$\delta=1 \mathrm{~mm}$
Area: $A=\left(D^{2}-d^{2}\right) \cdot \pi / 4=\left(117.5^{2}-43.5^{2}\right) \cdot \pi / 4=9357.2 \mathrm{~mm}^{2}$
Volume: $\mathrm{V}=\mathrm{A} \cdot \delta=9357.2 \mathrm{~mm}^{3}=9.3572 \mathrm{~cm}^{3}$
Information on a DVD: I = 4.7 Gigabytes, (1 byte $=8$ bits)
$\mathrm{I}=4.7 \cdot 10^{9}$ bytes $=8 \cdot 4.7 \cdot 10^{9}$ bits $=37.6 \cdot 10^{9}$ bits
Information density of a DVD: $\rho_{D V D}=37.6 \cdot 10^{9}$ bits $/ 9.3572 \mathrm{~cm}^{3}=4 \cdot 10^{9} \mathrm{bits} / \mathrm{cm}^{3}$
Information density of the DNA molecule: $\rho_{\text {DNA }}=1.88 \cdot 10^{21}$ bits $/ \mathrm{cm}^{3}$
(See: W. Gitt: In the Beginning was Information, CLV, p. 192)
Comparison:
$\rho_{\text {DNA }} / \rho_{\text {DVD }}=1.88 \cdot 10^{21}$ bits $/ \mathrm{cm}^{3} / 4 \cdot 10^{9}$ bits $/ \mathrm{cm}^{3}=0.47 \cdot 10^{12} \approx 0.5 \cdot 10^{12}$
The information density in the DNA molecule is $0.5 \cdot 10^{12}$ times higher than in a modern DVD!!!

